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Abstract

An efficient formulation for the response and dissipated energy of Bouc–Wen hysteretic model is proposed. The

displacement is associated with the hysteretic parameter in terms of Gauss’ hypergeometric function. The hysteretic

equation is solved analytically for specific values of the exponential parameter that controls the transition between elastic

and inelastic regime. This formulation is used to provide analytical expressions of the dissipated energy under symmetric

cyclic excitation, based solely on the model parameters and the displacement amplitude. For arbitrary values of the

exponential parameter, the equations are solved numerically. For fully yielding systems, approximate relations are

determined using suitable curve fitting. The derived expressions facilitate considerably the preliminary design of hysteretic

systems.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The Bouc–Wen model is a smooth endochronic model that is often used to describe hysteretic phenomena.
It was introduced by Bouc [1] and extended by Wen [2], who demonstrated its versatility by producing a
variety of hysteretic patterns. The model has been successfully employed in many areas of engineering, as for
example in reinforced concrete and steel structures [3,4], base isolation systems [5], wood joints [6],
magnetorheological fluid dampers [7], etc. The hysteretic behavior is treated in an unified manner by a single
nonlinear differential equation with no need to distinguish different phases, as for example in the various
Coulomb friction models [8].

In this study, the displacement of the system is expressed as a hypergeometric function of the hysteretic
parameter. Analytical solutions are provided for specific values of the exponential parameter. For arbitrary
values of the latter, efficient techniques are employed for the numerical solution of the derived equation. Thus,
the hysteretic response can be evaluated accurately for large displacement steps rather than infinitesimal ones.
Using this formulation, the dissipated energy under symmetric cyclic excitation can be determined
analytically. This allows for the accurate evaluation of the dissipated energy of hysteretic systems. Finally,
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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a parametric study that associates the dissipated energy with the displacement amplitude is conducted and the
results are discussed.

2. Model formulation

The restoring force F(t) of a single-degree-of-freedom system can be expressed as

F ðtÞ ¼ a
F y

uy

uðtÞ þ ð1� aÞF yzðtÞ, (1)

where u(t) is the displacement, Fy the yield force, uy the yield displacement, a the ratio of post-yield to pre-yield
(elastic) stiffness and z(t) a dimensionless hysteretic parameter that obeys a single nonlinear differential
equation:

_zðtÞ ¼
1

uy

½A� jzðtÞjnðbþ signð _uðtÞzðtÞÞgÞ� _uðtÞ, (2)

where A, b, g, n are dimensionless quantities controlling the behavior of the model, signð�Þ is the signum
function and the overdot denotes the derivative with respect to time. Small values of the positive exponential
parameter n correspond to smooth transition from elastic to post-elastic branch, whereas for large values of n

the transition becomes abrupt, approaching that of the bilinear model. Parameters b, g control the size and
shape of the hysteretic loop. Parameter A was introduced in the original paper, but it became evident that it is
redundant [9].

It follows from Eq. (1) that the restoring force F(t) can be analyzed into an elastic and a hysteretic part as
follows:

F elðtÞ ¼ a
Fy

uy

uðtÞ, (3)

FhðtÞ ¼ ð1� aÞFyzðtÞ. (4)

Thus, the model can be visualized as two springs connected in parallel (Fig. 1), where ki ¼ F y=uy and
kf ¼ aki are the initial and post-yielding stiffness of the system.

3. Parameter constraints

It has been shown in formal mathematical manner that the parameters of Bouc–Wen model are functionally
redundant; there exists a multiplicity of parameter vectors that produce an identical response for a given
uuy

F

Fy

Fyki = uy

a·ki

Fh
max

−Fh
max

Fel,u

Fh,u

Fel

u

u

Fh

Elastic Postyielding Spring

Hysteretic Spring
F,u

1−a ·ki

kf = a·ki

Fig. 1. Bouc–Wen model.
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excitation [9]. Removing this redundancy is best achieved by fixing parameter A to unity [9]. Henceforth, this
constraint is assumed to hold.

Further, by modifying parameters b and g one can produce hysteretic loops with strain-hardening, as
demonstrated by Wen [2]. However, these parameters do not have clear physical interpretation. Early studies
by Constantinou and Adnane [10] suggested imposing a certain constraint, viz., A=ðbþ gÞ ¼ 1, to reduce the
model to a formulation with well-defined properties. This constraint is also adopted herein. Strain hardening
can be achieved by more efficient techniques, such as the introduction of a dedicated spring; an example of this
approach can be found in Sivaselvan and Reinhorn [11].

Thus, the extrema of the hysteretic parameter are obtained by setting _z ¼ 0 in Eq. (2) as follows:

zext ¼ �
A

bþ g

� �1=n

¼ �1. (5)

Although not strictly adopted in this study, thermodynamic admissibility issues impose the following
inequality [12]:

gXb. (6)

Based on Eq. (6), the hysteretic loop assumes a bulge shape as opposed to a slim-S one.

4. Response

At any time instant, the behavior of Bouc–Wen model can be partitioned into four segments depending on
the sign of _u and z. In illustration, the response under cyclic excitation is shown in Fig. 2, where the dotted line
signifies the path of the elastic response. Points A and C signify sign reversal of velocity _u whereas points B and
D signify sign reversal of hysteretic force Fh or, equivalently of hysteretic parameter z 2 ½�1; 1�. Since the
calculation of the elastic response is trivial, the analysis presented herein focuses in the response of the
hysteretic spring only.

In the non-trivial case of b 6¼g and by omitting time, Eq. (2) can be expressed as

du ¼
uy

1� jzjnðbþ signð _uzÞgÞ
dz. (7)

The indefinite integral of Eq. (7) can be expressed analytically in terms of Gauss’ hypergeometric function

2F 1ða; b; c;wÞ. Accounting for initial conditions, Eq. (7) can be written in the form:

u� u0

uy

¼ z 2F 1 1;
1

n
; 1þ

1

n
; qjzjn

� �����
z

z0

, (8)

where q ¼ bþ signð _uzÞg and u0, z0 are the initial values of the displacement and hysteretic parameter,
respectively. Eq. (8) is solved analytically for z for specific values of the exponential parameter n. For n ¼ 1,
one obtains:

z ¼
signðzÞ þ ðqz0 � signðzÞÞ e�ðsignðzÞqðu�u0Þ=uyÞ

q
. (9)
kf = a·ki

F

A

B
D

C

u

u > 0, z < 0
u < 0, z < 0

u > 0, z > 0
u < 0, z > 0

Fig. 2. Response of Bouc–Wen model under cyclic excitation.



ARTICLE IN PRESS

Table 1

Signum values and domain of z per segment

Segment q sign(z) Domain

AB b�g 1 z0 2 ½0; 1�; z 2 ½0; z0�
BC 1 �1 z0 2 ð�1; 0�; z 2 ð�1; z0�
CD b�g �1 z0 2 ½�1; 0�; z 2 ½z0; 0�
DA 1 1 z0 2 ½0; 1Þ; z 2 ½z0; 1Þ
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For n ¼ 2, z is given by

z ¼
tanh

ffiffiffi
q
p
ðu� u0Þ

�
uy þ arctanh

ffiffiffi
q
p

z0
� �� �

ffiffiffi
q
p , (10)

where tanhð�Þ, arctanhð�Þ are the normal and inverse hyperbolic tangent, respectively. In Eq. (10),
ffiffiffi
q
p

may be
complex but the result is real. Special attention must be paid with respect to the values of signum and the
domain of hysteretic parameter z per segment (Table 1).

For arbitrary values of n, Eq. (8) must be solved numerically. An inspection of Eq. (2) shows that, given
g 2 ð0; 1�, the hysteretic parameter z is a continuous and strictly monotonic function of displacement u. Thus,
there exists a single root, if any, of Eq. (8) within the domain of z and the latter can be evaluated efficiently by
bisection-type methods. The Van Wijngaarden–Dekker–Brent method [13], which combines bisection and
inverse quadratic interpolation, typically requires few steps to yield z in double precision accuracy.

It is important to note that, considering the hypergeometric function 2F1ða; b; c;wÞ, point wð1; 0Þ is singular
in the complex plane and the limit needs to be evaluated as w! 1� [14]. Proper evaluation techniques are
provided in Appendix A. In particular, when loading in either direction, root bracketing is attempted with
extremum value of z equal to �ð1� �Þ, where e is machine epsilon. If this fails, then the system has yielded
fully and z ¼ �1 is assumed. When unloading, if root bracketing fails, then there is a segment transition,
i.e. from AB to BC, or from CD to DA, and z needs to be evaluated in two steps.

In the special case of b ¼ g ¼ 1=2, the unloading branches are straight lines and integration of Eq. (7) yields:

z ¼
ðu� u0Þ

uy

þ z0. (11)

Eq. (11) is independent of n. The loading branches are covered by Eq. (8).
5. Dissipated energy

The dissipated energy is expressed by the area enclosed by hysteretic loops. Generic analytical expressions
of the dissipated energy will be derived with respect to the steady-state response under symmetric wave
T-periodic input [15]. This class of inputs is common in identification procedures and includes sine waves,
triangular inputs, etc. Under a T-periodic excitation the response is asymptotically T-periodic and the
hysteretic loop is traced repeatedly [15].

The post-yielding spring of Fig. 1 does not dissipate energy and can be ignored. Thus, only the response of
the hysteretic spring is considered (Fig. 3), where the displacement amplitude umax is common in both
directions and Fh

max ¼ ð1� aÞFy is the maximum hysteretic force. As in the preceding section, points A and C

signify sign reversal of velocity _u, whereas points B and D signify sign reversal of hysteretic parameter
z 2 �1; 1½ �. The maximum value of the latter, occurring at point A, corresponds to the maximum
displacement. Making use of symmetry, it follows that uA ¼ �uC ¼ umax and zA ¼ �zC , where the subscript
denotes the corresponding point of the hysteretic loop. Considering the transition from point C to point A and
employing Eq. (8), one obtains:

umax

uy

¼
zA

2
2F1 1;

1

n
; 1þ

1

n
; ðb� gÞzn

A

� �
þ 2F 1 1;

1

n
; 1þ

1

n
; zn

A

� �� �
, (12)
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Fig. 3. Steady-state response of hysteretic spring under symmetric wave T-periodic excitation.
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where zA is the unknown maximum value of hysteretic parameter z. There exist several analytical expressions
of zA for specific values of n and (b�g). In general, however, numerical evaluation must be employed.
In similar manner, as in the preceding section, the Van Wijngaarden–Dekker–Brent method [13] is employed
which converges rapidly. If root bracketing with zA 2 ½0; 1� �� fails, then full yield is assumed and zA is taken
equal to unity.

Further, the dissipated energy during a complete cycle can be expressed in terms of zA. The enclosed area is
given by

E ¼

I
F h du. (13)

Attempting to change variable and integrate in terms of z leads to a formulation that is inappropriate for
fully yielding systems. This is because, for large values of the displacement, zA is very close to unity and thus
difficult to evaluate numerically with sufficient accuracy. An alternative method that eliminates this problem is
to evaluate the complementary areas, i.e. the dashed areas of Fig. 3, and subtract them from the outer
rectangle. Making use of symmetry, the dissipated energy is then expressed as follows:

E ¼ 4F h
maxumax � 2

Z uA

uC

ðF h
max � FhÞdu. (14)

Restricting attention to segment CD, the complementary area is given by

E
D0C0CD

� ¼ F h
maxuy

Z 0

�zA

ð1� zÞ

1� ð�zÞnðb� gÞ
dz. (15)

The integral of Eq. (15) can be expressed in terms of Gauss’ hypergeometric function 2F1ða; b; c;wÞ
as follows:

E
D0C0CD

� ¼ F h
maxuyk�CD, (16)

where

k�CD ¼ zA 2F1 1;
1

n
; 1þ

1

n
; ðb� gÞzn

A

� �
þ

1

2
z2A 2F1 1;

2

n
; 1þ

2

n
; ðb� gÞzn

A

� �
, (17)

When the system yields fully, it follows that zA ffi 1 and parameter k�CD is a function of n and g only
(Fig. 4a). Further, when b ¼ g ¼ 1=2 the unloading branch is a straight line with stiffness equal to F h

max=uy.
In this case, Eq. (16) yields 3=2Fh

maxuy (independent of n), i.e. the area of trapezoid D0C0CD (Fig. 3).
Following similar formulation for segment DA, the complementary area is evaluated as

E
AD0D

	 ¼ F h
maxuy

Z zA

0

ð1� zÞ

1� zn
dz. (18)
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Fig. 4. (a) Parameter k�CD as a function of n, g (b) Parameter k�DA as a function of n (full yield).

Table 2

Parameter k�DA for various values of n (full yield)

n k�DA (analytical) k�DA (numerical)

1
2

5
3

1.666667

1 1 1.000000
3
2 2 1�

ffiffiffi
3
p

p
�
9

� �
0.790800

2 ln (2) 0.693147

3
ffiffiffi
3
p

p
�
9 0.604600

4 ðpþ lnð4ÞÞ=8 0.565986

6
ffiffiffi
3
p

pþ ln 64ð Þ
� ��

18 0.533349

12 2pþ lnð4Þ �
ffiffiffi
3
p

ln 7� 4
ffiffiffi
3
p� �� ��

24 0.509648
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Eq. (18) takes the form:

E
AD0D

	 ¼ F h
maxuyk�DA, (19)

where

k�DA ¼ zA 2F1 1;
1

n
; 1þ

1

n
; zn

A

� �
�

1

2
z2A 2F1 1;

2

n
; 1þ

2

n
; zn

A

� �
. (20)

It should be emphasized that, when the system yields fully and zA ! 1�, the limit of Eq. (20) is bounded and
can be evaluated numerically (Fig. 4b). Closed-form solutions can also be derived for specific values of n

(Table 2). Further, as n increases the transition between elastic and post-elastic branches becomes abrupt and
it is observed that parameter k�DA approaches 1/2 asymptotically. At the limit, Eq. (19) yields 1=2Fh

maxuy;
i.e. the area of triangle GD0D (Fig. 3).

Thus, based on the derived complementary areas, Eq. (14) assumes the form:

E ¼ 2Fh
maxuy 2

umax

uy

� k�CD � k�DA

� �
. (21)

Eq. (21) can be employed for both partially and fully yielding systems. Particularly for the latter case,
parameters k�CD and k�DA can be provided by simple approximate functions. These are derived using standard
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Fig. 5. Dissipated energy as a function of displacement amplitude (b ¼ 0.1, g ¼ 0.9).
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curve-fit techniques, as follows:

k�CD ffi
0:003 lnðnÞ � 1:784 lnðgÞ � 1:238

1þ 0:89nþ 0:592g
þ 1:5; n 2 ½0:5; 12�; g 2 ½0:5; 1:0�, (22)

k�DA ffi
126:57þ 87:66nþ 35:96n2

1:0þ 177:37nþ 71:83n2
; n 2 ½0:5; 12�, (23)

where lnð�Þ is the natural logarithm. The maximum relative error of Eq. (22) is less than 0.4%, while Eq. (23) is
even more accurate, providing precision to the third decimal digit.
6. Results and discussion

Summarizing, the hysteretic response under imposed displacement can be determined using Eq. (8). This
equation is solved analytically for n ¼ 1 and 2. For arbitrary values of n, the equation can be solved
numerically by employing efficient procedures.

Considering the steady-state response under symmetric cyclic excitation, the unknown maximum value of
parameter z is determined from Eq. (12). The dissipated energy is then given by Eq. (21), i.e. by calculating the
complementary areas and subtracting them from the outer rectangle. This formulation is numerically stable
for both partially and fully yielding systems. For the latter case, which is usually encountered, parameters k�CD

and k�DA can be derived with sufficient accuracy from Eqs. (22) and (23), respectively.
By employing the methods presented herein, the dissipated energy per cycle can be determined based solely

on the displacement amplitude umax and parameter vector p ¼ fg; n; a;Fy; uyg. Thus, the preliminary design of
hysteretic systems is facilitated considerably, as for example in the case of base isolation systems of buildings
or bridges. Typically, the super-structure is assumed rigid. Based on identified Bouc–Wen parameters, the
proposed method yields more realistic results as compared to the simple bilinear model which is commonly
used [16].

Further, the dissipated energy is presented in Fig. 5 as a function of the displacement amplitude for several
values of the exponential parameter n. Both axes are normalized, while parameter g is taken equal to 0.9 in all
cases.

It is noted that, as the displacement amplitude increases, all curves become straight and parallel lines with a
common slope equal to four. This is expected because, for a fully yielding system, an increase in displacement
amplitude Dumax would result in an increase DE ¼ 4F h

max Dumax of the area enclosed by the hysteretic loop
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(Fig. 3). Further, as parameter n increases, the response of the system approaches that of the bilinear model
and thus the dissipated energy diminishes for umax=uyo1.
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Appendix A. Evaluation of hypergeometric function

In this study, one is interested in the evaluation of 2F1ða; b; c;wÞ for real values of w 2 ð�1; 1Þ. The
hypergeometric function is the analytical continuation of the so-called hypergeometric series [14]:

2F1ða; b; c;wÞ ¼
X1
n¼0

ðaÞnðbÞn
ðcÞn

wn

n!
, (24)

where ðwÞn ¼ wðwþ 1Þðwþ 1Þ . . . ðwþ n� 1Þ; ðwÞ0 ¼ 1 is Pochhammer’s symbol and n! the factorial of n.
Although the circle of convergence of the above series is the unit circle jwj, its rate of convergence is
satisfactory only for jwjp1/2 [13]. For w 2 ð1=2; 1Þ, the values are produced by linear transformation. In the
cases presented herein, c ¼ aþ b and hence the following formula is used [14]:

2F 1ða; b; aþ b;wÞ ¼
Gðaþ bÞ

GðaÞGðbÞ

X1
n¼0

ðaÞnðbÞn

ðn!Þ2

�½2cðnþ 1Þ � cðaþ nÞ � cðbþ nÞ � lnð1� wÞ�ð1� wÞn, ð25Þ

where Gð�Þ is the Gamma function and cð�Þ the Psi (Digamma) function. In general, Eq. (25) exhibits
satisfactory rate of convergence even when evaluating the limit of the hypergeometric function as w! 1�.
Finally, for w 2 ð�1;�1=2Þ, the following linear transformation is used [14]:

2F1ða; b; c;wÞ ¼ ð1� wÞ�a
2F1 a; c� b; c;

w

w� 1


 	
. (26)

The new function evaluation falls into one of the cases covered by Eqs. (24) and (25).
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